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1 Calculation of alignment scores

The main text describes an alignment scoring scheme thatpocates sequence quality data:
here we describe how our software performs these calcoiatidhe input given to the algo-
rithm includes a scoring matrix, and read quality scorestimee FASTQ format (one quality
score per base) or PRB format (four quality scores per basejder to use the scoring scheme
in equation 12 of the main text, we need to pre-calculaté,,,, andP(y|d). Given a scoring
matrix, it is possible to calculatgé uniquely [5], and we do so using software kindly supplied
by Yu and Altschul. WithI" in hand,R,, is simplyexp(S,,/T). We convert quality score),

to P(y|d) as follows:

P(yld) = 1 — 10~@w/10 (S1)

or:

P(y|d) = 1/(1 + 10~ @/10) | (S2)

depending on the type of quality score provided. For FASTQ,dae estimate the probability
of the most probable base as above and the probabilities for the other three bases as:

P(2|d).pm = (1 — P(m|d)) /3. (S3)

To gain speed, we pre-calculate lookup tables, so that eyasgible quality score can be
immediately translated t8(y|d) andP(z|d). This is feasible because quality scores are always
small integers.

Calculation of the position-specific-scoring-matrix ugin

=T x> (RyPyld)) (S4)

Y

is still a little slow. For simple scoring matrices in whichh matches have the same score
Smateh = 1" X In Rmaren, @nd all mismatches have the same s&gnaich= 7" X In Rmismatch W€
use a faster method. In this case, noting that:



> P(yld) = 1- P(a|d) (S5)
y#x
we observe that the following is equivalent to equalioh S4:

'. = T xIn[ P(x|d) X Rmatch + (1 — P(z|d) ) X Rmismatch] - (S6)

Since this computation depends only Biz|d), which is stipulated by),, we can pre-
compute lookup tables for translating quality scores diye¢o S’ ,. (For PRB data, this formula
may give numerically different results than equatioh S4.isTi& because the quality scores
in the PRB file have each been rounded to the nearest integkifter rounding errors the
probabilities generally do not sum to exactly 1.)

In our software, the valueS!, in the position-specific-scoring-matrix are rounded to the
nearest integer.

2 Mapping probabilities for local and semi-global alignmernt

In our formulation a read mapping is simply an alignment lestwthe read and the genome.
We motivate the probability formula for a mappipg

plp) =31y (5T (S7)
a€Emappings
based on a probabilistic model of alignment. We considdr lmatal and semi-global alignment.
“Local” alignment allows alignment between any part of thad and any part of the genome;
while “semi-global” alignment requires the entire read ligra In either case, the probability
of a mapping: can be written as the following Bayesian formula:

P(datgu) x P(u)
OB = S o P(datE0)  P(a)
where the data consists of the genome, the read and itsygsedites. The probability of the
observed data (the genome sequence and the sequencerivead) gappingy is:

P(datde) = [[ P(mdlA) x 11 P(z;) x 11 P(dy) (S9)

lealigned inaw j€genome unaligned in kéeread unaligned i

Wherez; denotes théth aligned genome base adgdthe sequencer data for the read position
aligned to it,z; denotes thgth unaligned genome base, af)ddenotes the sequencer data for
the kth unaligned position of the read.

This formula can be rearranged to obtain:

P(datda) = I[I P@dald) x 11 P(z;) x ] P(dy)
[ € aligned ina j € genome unaligned iav k € read unaligned imx
= B [ (P(ud|A)/P(x)P(d))
1 € aligned ina
=B ] FR@ad) (S10)
[ € aligned ina



where,

B= [ Pa@) x ] P). (S11)
1 € entire genome j € entire read
SinceB does not depend on the alignment, the probability of a mapgiven the data (equa-
tion[S8) can be rewritten:

P(,LL) Hl € aligned inu R/(xldl)
ZaGmappings(P(a) Hl € aligned ina R/(xldl)>

This is equivalent to equatidnIS7.

Semi-global alignment is theoretically more sensitiventlecal alignment, in cases where
its model is appropriate (i.e. we are certain that the whede Icomes from a contiguous region
of the genome). This may not always be true. Moreover, thetfet BLAST-like alignment
tools such as AST (andBLAST itself of course) employ heuristics to improve computation
speed and may not always report all high scoring mappingeptiocates the issue. Thus it is
not cleara priori that semi-global alignment will outperform local alignni@mpractice.

P(u|datg =

(S12)

2.1 Comparison to previous mapping probability calculations

The calculation described above is similar to ones desgtpbeviously[1/8]. The main novel-
ties are that we model real sequence differences, usingimgaoatrix and gap costs, and we
allow for local alignment. If these ingredients are remoyeg. by setting the mismatch and
gap costs to infinity), our calculation becomes equivalernihé previous ones.

Li et al. describe three sources of mapping eriror [3]:

Type-1 Spuriously mapped reads that do not really come from theeeée genome sequence
at all.

Type-2 Erroneously mapped reads, whose true mapping to the retergas missed by the
heuristic alignment algorithm.

Type-3 Erroneously mapped reads, reads whose true mapping wasissgdby the algo-
rithm.

Our calculation accounts for type-3 errors only. In the wofk.i et al., type-1 errors are “not
counted”, but they do give a formula for type-2 errors. In enacent work by these authors,
however, they “assume the true hit can always be found” [&.uMerstand this to mean that
they no longer account for type-2 errors.

3 Justifications for some mapping parameters

In this study, we needed to fix values for various parameigeh as the mapping probability
threshold and the spaced seed pattern. Here, we justify esbow choices.



3.1 Mapping probability threshold

Throughout this study, we used alignments with mapping gindity > 0.99. Figure B4 shows
what happens if we instead use 0.9 or 0.999. With a thresHod% we get significantly
more false mappings. With a threshold of 0.999, we initigky fewer false mappings, but the
number of correct mappings ultimately found is slightly EwThe “right” mapping probabil-
ity threshold depends on the balance we wish to achieve eetitvee number of correct and
incorrect mappings, but these findings show that 0.99 appeasonable.

3.2 Spaced seed pattern

LAST can use “adaptive spaced seeds”, which we explain with amgbea Suppose we use
this spaced seed pattert111110. Starting from a particular base in a DNA reddAST
will look for the shortest sequence that occurs no more tlsag)(ten times in the genome.
However, it will tolerate mismatches at every seventh btseattern is cyclically repeated).

We have not rigorously determined which spaced seed pasteyptimal. Here, we just
tried three patternst (i.e. ordinary non-spaced seedt),11110,and11111011000. The
reason we tried the latter two is that these (when cycligalheated out to a sufficient size) are
optimal for guaranteeing to find alignments with, respedyivone or two mismatches.

For simulated reads, spaced seeds give clearly better ngappcuracy than non-spaced
seeds (Figure[$5). This is consistent with previous obsensthat spaced seeds are superior
[4]. The patternl 111110 seems slightly better thatil111011000 for low levels of substi-
tution (0.2% to 1%), but it might become worse for higher Isva substitution. In any case,
we selected 111110 as the default seed for this study.

3.3 Scale for the score parameters

The score parameters shown in Table 1 of the main text imaharbitrary scale factor,. We
set the scale by fixing the match score to be exactly 6 in alaghis is not necessary, but
we did so because it causggo be approximately0/In(10), and thus the resulting alignment
scores are roughly comparable to phred scores.

3.4 Local versus semi-global alignment

We had to choose whether to align reads to the genome usiabdosemi-global alignment.
For our tests with simulated reads, we might expect senbajlalignment to work better,
because by design the entire read comes from the genomeedtalata, this may not be true:
in our experience, reads often have contaminating sequarether or both ends.

LAST (like BLAST) is designed to do local alignment, but it can be tricked ddmg semi-
global alignment. The trick is simply to add 100 to each emrhe scoring matrix, so that all
matches and mismatches have positive scores. After alighmve subtract00 x (read length
from the alignment scored. AST will refuse to calculatd’ for such a scoring matrix, but we
can supplyl’ manually. This trick would need to be modified for alignmeimtivgaps, but we
only used gapless semi-global alignment in this study.

Mapping accuracy for simulated reads with local and semipgll alignment is shown in
Figure £6. Surprisingly, local alignment does rather waliducing fewer false mappings ini-
tially, although it ultimately finds slightly fewer correntappings than semi-global alignment.
On the other hand, if we do the mapping in two-mismatch-guaeamode, the advantage of



local alignment almost vanishes (Figuid S7). This can béaegd as follows: if a read aligns
to several genome locations, the difference in alignmeorescwill tend to be lower with local
alignment, because local alignment allows more flexibilligus, local alignment will produce
mapping probabilities> 0.99 less often than semi-global alignment. This makes rtenes-
sential not to miss any high-scoring alignments when doemgigglobal alignment. In other
words, local alignment is more robust to heuristic algongithat miss some alignments.

4 Gap costs for aligningD. melanogaster and D. simulans
DNA

As mentioned in the main text, we obtained suitable gap dystxamining genome alignments
of D. melanogaster versusD. simulans. We first measured the gap frequency (one per 101
aligned bases), and average gap size (6.67). We then daldtifee following probabilities:

p(open a gap= 1/(alignedBasesPerGap1) (S13)
p(extend a gap= (meanGapSize 1)/meanGapSize (S14)
p(close a gap= 1/meanGapSize (S15)

The gap extension penalty is:

GEP= —T In[p(extend a gap . (S16)
The gap opening penalty is:

GOP= —T'In[p(open a gapx p(close a gap/2] — GEP. (S17)

The factor of 2 appears because the gap may occur in eithéedino sequences. We
subtract GEP in order to arrange that the gap cost is G@EP x (gap length, rather than
GOP+ GEPx (gap length- 1).

5 Scalability and memory requirements ofLAST

LAST currently uses 5-6 bytes of memory per base in the genoman lhandle a 3-billion-bp
mammalian genome using about 16 gigabytes of memory. Alteely, it can handle a mam-
malian genome in 2 gigabytes, by automatically groupingctm®mosomes into sufficiently
small groups, and aligning the query sequences to each grdaum. This grouping approach
is slower, however. So there is a trade-off between speedreamory usage, which can be
adjusted by the user.

We are investigating other techniques to reduce the mensageau(e.g. compressed suffix
array, FM-index). In our understanding, these technigaes h practical cost in terms of speed.
Our first attempt to use a compressed suffix array proved sltvee chromosome-grouping
(Kengo Sato, unpublished results). So the value of the$migaes is not yet clear.

6 Supporting Figures



SRR001981 SRR016157 SRR000806 SRR020080 SRR023647

Submitter: UC-DPGP Submitter: Bl Submitter: NHLBI-LMI Submitter: GEO Submitter: BDGP, LBNL
Sample: D. melanogaster Sample: S. aureus Sample: H. sapiens Sample: H. sapiens Sample: D. melanogaster
Instrument: Solexa 1G GA  Instrument: lllumina GA Il Instrument: Solexa 1G GA  Instrument: lllumina GA I Instrument: lllumina GA Il
Read length: 36 Read length: 51 Read length: 25 Read length: 87 Read length: 76
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Figure S1: Estimated error rates for several DNA short-geddsets, from different submitters.
The datasets and title information were obtained from thé8N&hort Read Archive. Each
black bar shows the median error rate at one position, am08@Qa0 DNA reads. Each gray
bar shows the mean error rate. These datasets were piclkattiaim, without (e.g.) preferring
datasets with high error rates. These datasets show diffener patterns, but the datasets used
in this study (first two columns) do not have particularly snal error rates. The graphs in the
top row used the first 100,000 reads in each dataset, whér@gsaphs in the bottom row used
100,000 randomly chosen reads from each dataset. Althdigydaes affect the distributions,
it does not greatly alter the error rates of the two datassgd in this study.
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Figure S2: Mapping accuracy for 100,000 simulated 36-bgdgedhe reads differ from the
genome by a certain rate of “real” substitutions (0.2%, Q.8%, or 5%), plus sequencer errors.
In each case, 60% of the “real” substitutions are transstimmd 40% are transversions. Each
line shows the relationship between the number of correstly incorrectly mapped reads as
the alignment score cutoff is varied. Circles indicate asawtoff of 150. Dashed lines show
the mapping accuracy when we model the sequencer errorstitiensubstitutions. Solid lines
show the accuracy when we model both. Dotted lines show th&acy when we model both,
but ignore the difference between transitions and trasswes. The solid and dashed lines here
are identical to those in Figure 2 of the main text.
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Figure S3: Estimated mapping accuracy for 100,000 realBfehds fromD. melanogaster,
mapped to th®. simulans genome. Circles indicate a score cutoff of 150. Dotted Isteswv
the mapping accuracy when we model the sequencer errorobtitenreal differences. Solid
lines show the accuracy when we model both. Dashed red Ihnms the accuracy when we
model both but forbid insertions and deletions. Corredngas estimated by mapping the
reads to thd. melanogaster genome (modeling sequencer errors only), and using the UCSC
D. melanogaster/D. simulans pairwise genome alignment to cross-reference the mappiAys
The reads were mapped to both genomes using the default hadsd. This panel is iden-
tical to Figure 5 in the main text. (B) The reads were mappdd.t@mulans in default mode,
but to D. melanogaster in two-mismatch-guarantee mode. (C) The reads were majgped t
simulans in two-mismatch-guarantee mode andXtomelanogaster in default mode. (D) The
reads were mapped to both genomes in two-mismatch-guarartee.
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Figure S4: Mapping accuracy for 100,000 simulated 36-bgseaith different mapping prob-
ability thresholds. Solid lines show the accuracy when we mappings with probability>

0.99. Dashed lines show the accuracy for mapping probgabili®.999. Dotted lines show the
accuracy for mapping probability 0.9. In all cases, we modeled both the sequencer errors
and the “real” substitutions. The other figures all use astoéd of 0.99: so the solid lines here
are identical to those in Figures 2, S2, S5, and S6.
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Figure S5: Mapping accuracy for 100,000 simulated 36-bdgeesing different spaced seed
patterns. In all cases, we modeled both the sequencer amdrthe “real” substitutions. The
solid lines here are identical to those in Figures 2, S2, 64 S6.
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Figure S6: Mapping accuracy for 100,000 simulated 36-bdseasing either local or semi-
global alignment. Here, “semi-global alignment” meang tie whole read sequence was
forced to align to the genome; “local alignment” means thginanents involving only part
of the read were allowed. In all cases, we modeled both theesegr errors and the “real”
substitutions. The other figures all use local alignmentthgosolid lines here are identical to
those in Figures 2, S2, S4, and Sb5.
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Figure S7: Mapping accuracy for 100,000 simulated 36-bdseasing either local or semi-
global alignment. This is identical to FigurglS6, except tiere we used the alternative map-
ping algorithm, which guarantees to find all matches withapato substitutions. The solid
lines here are identical to those in Figure 4 of the main text.
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7 Supporting Tables

Table S1: Run times for mapping 100,000 reads Wi##ST on one core of a 1.86 GHz Xeon
E5320 CPU. The execution times exclude the time for indeiireggenome, which are: 309
secs for human chromosome 1 in default mode; 307 secs forhghramosome 1 in two-
mismatch-guarantee mode; 151 secs forDhamulans genome in default mode; 149 secs for
theD. simulans genome in two-mismatch-guarantee mode.

Default Two-mismatch-
mode guarantee mode

Mapping 36-bp readd¢o human chromosome 1

Model sequencer errors only 22 sec 130 sec
Model substitutions only 21 sec 185 sec
Model both 30 sec 190 sec
Model both, but ignore the difference between transitiorts a23 sec 176 sec

transversions
Mapping 51-bp readd¢o human chromosome 1

Model sequencer errors only 30 sec
Model substitutions only 29 sec
Model both 42 sec

Model both, but ignore the difference between transitioms a 32 sec
transversions
Mapping 36-bp reads to tHe. smulans genome

Model sequencer errors only 17 sec 14 sec

Model sequencer errors and real differences, excludiregins24 sec 23 sec
tions and deletions

Model sequencer errors and real differences, includingrins 29 sec 56 sec

tions and deletions

! Simulated reads with 1% substitutions, plus sequencerserro
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